Effect of ultrasound, low-temperature thermal and alkali pre-treatments on waste activated sludge rheology, hygienization and methane potential.
نویسندگان
چکیده
Waste activated sludge is slower to biodegrade under anaerobic conditions than is primary sludge due to the glycan strands present in microbial cell walls. The use of pre-treatments may help to disrupt cell membranes and improve waste activated sludge biodegradability. In the present study, the effect of ultrasound, low-temperature thermal and alkali pre-treatments on the rheology, hygienization and biodegradability of waste activated sludge was evaluated. The optimum condition of each pre-treatment was selected based on rheological criteria (reduction of steady state viscosity) and hygienization levels (reduction of Escherichia coli, somatic coliphages and spores of sulfite-reducing clostridia). The three pre-treatments were able to reduce the viscosity of the sludge, and this reduction was greater with increasing treatment intensity. However, only the alkali and thermal conditioning allowed the hygienization of the sludge, whereas the ultrasonication did not exhibit any notorious effect on microbial indicators populations. The selected optimum conditions were as follows: 27,000 kJ/kg TS for the ultrasound, 80 °C during 15 min for the thermal and 157 g NaOH/kg TS for the alkali. Afterward, the specific methane production was evaluated through biomethane potential tests at the specified optimum conditions. The alkali pre-treatment exhibited the greatest methane production increase (34%) followed by the ultrasonication (13%), whereas the thermal pre-treatment presented a methane potential similar to the untreated sludge. Finally, an assessment of the different treatment scenarios was conducted considering the results together with an energy balance, which revealed that the ultrasound and alkali treatments entailed higher costs.
منابع مشابه
Improvement of Anaerobic Digestion of Sewage Sludge, Using Combined Hydrogen Peroxide and Thermal Pre-Treatment
The present study investigates the influence of individual and combined hydrogen peroxide and thermal pre-treatment of waste activated sludge on anaerobic digestion. For so doing, it employs anaerobic batch reactors in the mesophilic conditions. For comparison, soluble fractions of organic matter, biogas production, biochemical methane potential, removal of chemical oxygen demand (COD), and vol...
متن کاملImprovement of Anaerobic Digestion of Sewage Sludge, Using Combined Hydrogen Peroxide and Thermal Pre-Treatment
The present study investigates the influence of individual and combined hydrogen peroxide and thermal pre-treatment of waste activated sludge on anaerobic digestion. For so doing, it employs anaerobic batch reactors in the mesophilic conditions. For comparison, soluble fractions of organic matter, biogas production, biochemical methane potential, removal of chemical oxygen demand (COD), and vol...
متن کاملSono-oxidative Pre-treatment of Waste Activated Sludge before Anaerobic Biodegradation
The effects of sonication, potassium ferrate (K2FeO4) oxidation and their simultaneous combination (called “sono-oxidative pre-treatment”) on chemical properties and anaerobic digestion of waste activated sludge (WAS) were investigated and compared comprehensively. Based on chemical parameters, the optimum operating conditions were found to be 0.3 g K2FeO4/g total solids (TS) dosage for 2-h ind...
متن کاملPotential and optimization of two-phase anaerobic digestion of oil refinery waste activated sludge and microbial community study
Oil refinery waste activated sludge produced from oil wastewater biological treatment is a major industrial sludge. Two-phase anaerobic digestion of oil refinery waste activated sludge was studied for the first time. Thermal pretreatment under 170 °C is effective on sludge solubilization. At the optimum hydrolytic-acidogenic condition which was pH of 6.5, temperature of 55 °C and HRT of 2 days,...
متن کاملEffects of Thermal-Alkaline Pretreatment on Solubilisation and High-Solid Anaerobic Digestion of Dewatered Activated Sludge
The effects of thermal-alkaline pretreatment on dewatered activated sludge (DAS) solubilisation and subsequent high-solid anaerobic digestion were studied by response surface methodology (RSM) from 105 to 135 °C and between 5 and 35 mg alkaline/g total solid (TS) DAS. Soluble chemical oxygen demand (SCOD), soluble carbohydrates, and protein concentrations were significantly enhanced in thermal-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Water research
دوره 61 شماره
صفحات -
تاریخ انتشار 2014